Goto

Collaborating Authors

 Henan Province


NeuralSteiner: Learning Steiner Tree for Overflow-avoiding Global Routing in Chip Design

Neural Information Processing Systems

Global routing plays a critical role in modern chip design. The routing paths generated by global routers often form a rectilinear Steiner tree (RST). Recent advances from the machine learning community have shown the power of learning-based route generation; however, the yielded routing paths by the existing approaches often suffer from considerable overflow, thus greatly hindering their application in practice. We propose NeuralSteiner, an accurate approach to overflow-avoiding global routing in chip design. The key idea of NeuralSteiner approach is to learn Steiner trees: we first predict the locations of highly likely Steiner points by adopting a neural network considering full-net spatial and overflow information, then select appropriate points by running a graph-based post-processing algorithm, and finally connect these points with the input pins to yield overflow-avoiding RSTs. NeuralSteiner offers two advantages over previous learning-based models. First, by using the learning scheme, NeuralSteiner ensures the connectivity of generated routes while significantly reducing congestion. Second, NeuralSteiner can effectively scale to large nets and transfer to unseen chip designs without any modifications or fine-tuning. Extensive experiments over public large-scale benchmarks reveal that, compared with the state-of-the-art deep generative methods, NeuralSteiner achieves up to a 99.8% reduction in overflow while speeding up the generation and maintaining a slight wirelength loss within only 1.8%.


KKA: Improving Vision Anomaly Detection through Anomaly-related Knowledge from Large Language Models

arXiv.org Artificial Intelligence

Vision anomaly detection, particularly in unsupervised settings, often struggles to distinguish between normal samples and anomalies due to the wide variability in anomalies. Recently, an increasing number of studies have focused on generating anomalies to help detectors learn more effective boundaries between normal samples and anomalies. However, as the generated anomalies are often derived from random factors, they frequently lack realism. Additionally, randomly generated anomalies typically offer limited support in constructing effective boundaries, as most differ substantially from normal samples and lie far from the boundary. To address these challenges, we propose Key Knowledge Augmentation (KKA), a method that extracts anomaly-related knowledge from large language models (LLMs). More specifically, KKA leverages the extensive prior knowledge of LLMs to generate meaningful anomalies based on normal samples. Then, KKA classifies the generated anomalies as easy anomalies and hard anomalies according to their similarity to normal samples. Easy anomalies exhibit significant differences from normal samples, whereas hard anomalies closely resemble normal samples. KKA iteratively updates the generated anomalies, and gradually increasing the proportion of hard anomalies to enable the detector to learn a more effective boundary. Experimental results show that the proposed method significantly improves the performance of various vision anomaly detectors while maintaining low generation costs. The code for CMG can be found at https://github.com/Anfeather/KKA.


AI in Oncology: Transforming Cancer Detection through Machine Learning and Deep Learning Applications

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has potential to revolutionize the field of oncology by enhancing the precision of cancer diagnosis, optimizing treatment strategies, and personalizing therapies for a variety of cancers. This review examines the limitations of conventional diagnostic techniques and explores the transformative role of AI in diagnosing and treating cancers such as lung, breast, colorectal, liver, stomach, esophageal, cervical, thyroid, prostate, and skin cancers. The primary objective of this paper is to highlight the significant advancements that AI algorithms have brought to oncology within the medical industry. By enabling early cancer detection, improving diagnostic accuracy, and facilitating targeted treatment delivery, AI contributes to substantial improvements in patient outcomes. The integration of AI in medical imaging, genomic analysis, and pathology enhances diagnostic precision and introduces a novel, less invasive approach to cancer screening. This not only boosts the effectiveness of medical facilities but also reduces operational costs. The study delves into the application of AI in radiomics for detailed cancer characterization, predictive analytics for identifying associated risks, and the development of algorithm-driven robots for immediate diagnosis. Furthermore, it investigates the impact of AI on addressing healthcare challenges, particularly in underserved and remote regions. The overarching goal of this platform is to support the development of expert recommendations and to provide universal, efficient diagnostic procedures. By reviewing existing research and clinical studies, this paper underscores the pivotal role of AI in improving the overall cancer care system. It emphasizes how AI-enabled systems can enhance clinical decision-making and expand treatment options, thereby underscoring the importance of AI in advancing precision oncology


Towards Fair Class-wise Robustness: Class Optimal Distribution Adversarial Training

arXiv.org Artificial Intelligence

Adversarial training has proven to be a highly effective method for improving the robustness of deep neural networks against adversarial attacks. Nonetheless, it has been observed to exhibit a limitation in terms of robust fairness, characterized by a significant disparity in robustness across different classes. Recent efforts to mitigate this problem have turned to class-wise reweighted methods. However, these methods suffer from a lack of rigorous theoretical analysis and are limited in their exploration of the weight space, as they mainly rely on existing heuristic algorithms or intuition to compute weights. In addition, these methods fail to guarantee the consistency of the optimization direction due to the decoupled optimization of weights and the model parameters. They potentially lead to suboptimal weight assignments and consequently, a suboptimal model. To address these problems, this paper proposes a novel min-max training framework, Class Optimal Distribution Adversarial Training (CODAT), which employs distributionally robust optimization to fully explore the class-wise weight space, thus enabling the identification of the optimal weight with theoretical guarantees. Furthermore, we derive a closed-form optimal solution to the internal maximization and then get a deterministic equivalent objective function, which provides a theoretical basis for the joint optimization of weights and model parameters. Meanwhile, we propose a fairness elasticity coefficient for the evaluation of the algorithm with regard to both robustness and robust fairness. Experimental results on various datasets show that the proposed method can effectively improve the robust fairness of the model and outperform the state-of-the-art approaches.


Iterative Reweighted Framework Based Algorithms for Sparse Linear Regression with Generalized Elastic Net Penalty

arXiv.org Machine Learning

The elastic net penalty is frequently employed in high-dimensional statistics for parameter regression and variable selection. It is particularly beneficial compared to lasso when the number of predictors greatly surpasses the number of observations. However, empirical evidence has shown that the $\ell_q$-norm penalty (where $0 < q < 1$) often provides better regression compared to the $\ell_1$-norm penalty, demonstrating enhanced robustness in various scenarios. In this paper, we explore a generalized elastic net model that employs a $\ell_r$-norm (where $r \geq 1$) in loss function to accommodate various types of noise, and employs a $\ell_q$-norm (where $0 < q < 1$) to replace the $\ell_1$-norm in elastic net penalty. Theoretically, we establish the computable lower bounds for the nonzero entries of the generalized first-order stationary points of the proposed generalized elastic net model. For implementation, we develop two efficient algorithms based on the locally Lipschitz continuous $\epsilon$-approximation to $\ell_q$-norm. The first algorithm employs an alternating direction method of multipliers (ADMM), while the second utilizes a proximal majorization-minimization method (PMM), where the subproblems are addressed using the semismooth Newton method (SNN). We also perform extensive numerical experiments with both simulated and real data, showing that both algorithms demonstrate superior performance. Notably, the PMM-SSN is efficient than ADMM, even though the latter provides a simpler implementation.


Semi-adaptive Synergetic Two-way Pseudoinverse Learning System

arXiv.org Artificial Intelligence

Deep learning has become a crucial technology for making breakthroughs in many fields. Nevertheless, it still faces two important challenges in theoretical and applied aspects. The first lies in the shortcomings of gradient descent based learning schemes which are time-consuming and difficult to determine the learning control hyperparameters. Next, the architectural design of the model is usually tricky. In this paper, we propose a semi-adaptive synergetic two-way pseudoinverse learning system, wherein each subsystem encompasses forward learning, backward learning, and feature concatenation modules. The whole system is trained using a non-gradient descent learning algorithm. It simplifies the hyperparameter tuning while improving the training efficiency. The architecture of the subsystems is designed using a data-driven approach that enables automated determination of the depth of the subsystems. We compare our method with the baselines of mainstream non-gradient descent based methods and the results demonstrate the effectiveness of our proposed method. The source code for this paper is available at http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System}{http://github.com/B-berrypie/Semi-adaptive-Synergetic-Two-way-Pseudoinverse-Learning-System.


Efficient Low-rank Identification via Accelerated Iteratively Reweighted Nuclear Norm Minimization

arXiv.org Artificial Intelligence

This paper considers the problem of minimizing the sum of a smooth function and the Schatten-$p$ norm of the matrix. Our contribution involves proposing accelerated iteratively reweighted nuclear norm methods designed for solving the nonconvex low-rank minimization problem. Two major novelties characterize our approach. Firstly, the proposed method possesses a rank identification property, enabling the provable identification of the "correct" rank of the stationary point within a finite number of iterations. Secondly, we introduce an adaptive updating strategy for smoothing parameters. This strategy automatically fixes parameters associated with zero singular values as constants upon detecting the "correct" rank while quickly driving the rest of the parameters to zero. This adaptive behavior transforms the algorithm into one that effectively solves smooth problems after a few iterations, setting our work apart from existing iteratively reweighted methods for low-rank optimization. We prove the global convergence of the proposed algorithm, guaranteeing that every limit point of the iterates is a critical point. Furthermore, a local convergence rate analysis is provided under the Kurdyka-{\L}ojasiewicz property. We conduct numerical experiments using both synthetic and real data to showcase our algorithm's efficiency and superiority over existing methods.


SIAVC: Semi-Supervised Framework for Industrial Accident Video Classification

arXiv.org Artificial Intelligence

Semi-supervised learning suffers from the imbalance of labeled and unlabeled training data in the video surveillance scenario. In this paper, we propose a new semi-supervised learning method called SIAVC for industrial accident video classification. Specifically, we design a video augmentation module called the Super Augmentation Block (SAB). SAB adds Gaussian noise and randomly masks video frames according to historical loss on the unlabeled data for model optimization. Then, we propose a Video Cross-set Augmentation Module (VCAM) to generate diverse pseudo-label samples from the high-confidence unlabeled samples, which alleviates the mismatch of sampling experience and provides high-quality training data. Additionally, we construct a new industrial accident surveillance video dataset with frame-level annotation, namely ECA9, to evaluate our proposed method. Compared with the state-of-the-art semi-supervised learning based methods, SIAVC demonstrates outstanding video classification performance, achieving 88.76\% and 89.13\% accuracy on ECA9 and Fire Detection datasets, respectively. The source code and the constructed dataset ECA9 will be released in \url{https://github.com/AlchemyEmperor/SIAVC}.


Simplifying Kinematic Parameter Estimation in sEMG Prosthetic Hands: A Two-Point Approach

arXiv.org Artificial Intelligence

Regression-based sEMG prosthetic hands are widely used for their ability to provide continuous kinematic parameters. However, establishing these models traditionally requires complex kinematic sensor systems to collect corresponding kinematic data in synchronization with EMG, which is cumbersome and user-unfriendly. This paper presents a simplified approach utilizing only two data points to depict kinematic parameters. Finger flexion is recorded as 1, extension as -1, and a near-linear model is employed to interpolate intermediate values, offering a viable alternative for kinematic data. We validated the approach with twenty participants through offline analysis and online experiments. The offline analysis confirmed the model's capability to fill in intermediate points and the online experiments demonstrated that participants could control gestures, adjust force accurately. This study significantly reduces the complexity of collecting dynamic parameters in EMG-based regression prosthetics, thus enhancing usability for prosthetic hands.


Pathology-genomic fusion via biologically informed cross-modality graph learning for survival analysis

arXiv.org Artificial Intelligence

The diagnosis and prognosis of cancer are typically based on multi-modal clinical data, including histology images and genomic data, due to the complex pathogenesis and high heterogeneity. Despite the advancements in digital pathology and high-throughput genome sequencing, establishing effective multi-modal fusion models for survival prediction and revealing the potential association between histopathology and transcriptomics remains challenging. In this paper, we propose Pathology-Genome Heterogeneous Graph (PGHG) that integrates whole slide images (WSI) and bulk RNA-Seq expression data with heterogeneous graph neural network for cancer survival analysis. The PGHG consists of biological knowledge-guided representation learning network and pathology-genome heterogeneous graph. The representation learning network utilizes the biological prior knowledge of intra-modal and inter-modal data associations to guide the feature extraction. The node features of each modality are updated through attention-based graph learning strategy. Unimodal features and bi-modal fused features are extracted via attention pooling module and then used for survival prediction. We evaluate the model on low-grade gliomas, glioblastoma, and kidney renal papillary cell carcinoma datasets from the Cancer Genome Atlas (TCGA) and the First Affiliated Hospital of Zhengzhou University (FAHZU). Extensive experimental results demonstrate that the proposed method outperforms both unimodal and other multi-modal fusion models. For demonstrating the model interpretability, we also visualize the attention heatmap of pathological images and utilize integrated gradient algorithm to identify important tissue structure, biological pathways and key genes.